Regulation of sterol synthesis in eukaryotes.
نویسندگان
چکیده
Cholesterol is an essential component of mammalian cell membranes and is required for proper membrane permeability, fluidity, organelle identity, and protein function. Cells maintain sterol homeostasis by multiple feedback controls that act through transcriptional and posttranscriptional mechanisms. The membrane-bound transcription factor sterol regulatory element binding protein (SREBP) is the principal regulator of both sterol synthesis and uptake. In mammalian cells, the ER membrane protein Insig has emerged as a key component of homeostatic regulation by controlling both the activity of SREBP and the sterol-dependent degradation of the biosynthetic enzyme HMG-CoA reductase. In this review, we focus on recent advances in our understanding of the molecular mechanisms of the regulation of sterol synthesis. A comparative analysis of SREBP and HMG-CoA reductase regulation in mammals, yeast, and flies points toward an equilibrium model for how lipid signals regulate the activity of sterol-sensing proteins and their downstream effectors.
منابع مشابه
Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus.
Sterol biosynthesis is viewed primarily as a eukaryotic process, and the frequency of its occurrence in bacteria has long been a subject of controversy. Two enzymes, squalene monooxygenase and oxidosqualene cyclase, are the minimum necessary for initial biosynthesis of sterols from squalene. In this work, 19 protein gene sequences for eukaryotic squalene monooxygenase and 12 protein gene sequen...
متن کاملGeranylgeranyl pyrophosphate (GGPP) is a potent regulator of HRD- dependent HMG-CoA reductase degradation in yeast
HMG-CoA reductase (HMGR), the ratelimiting enzymes of sterol synthesis, undergoes feedback-regulated ER degradation in both mammals and yeast. The yeast Hmg2p isozyme is subject to ubiquitin-mediated ER degradation by the HRD pathway. We had previously shown that alterations in cellular levels of the 15-carbon sterol pathway intermediate farnesyl pyrophosphate (FPP) cause increased Hmg2p ubiqui...
متن کاملPhylogenomics of Sterol Synthesis: Insights into the Origin, Evolution, and Diversity of a Key Eukaryotic Feature
The availability of complete genomes from a wide sampling of eukaryotic diversity has allowed the application of phylogenomics approaches to study the origin and evolution of unique eukaryotic cellular structures, but these are still poorly applied to study unique eukaryotic metabolic pathways. Sterols are a good example because they are an essential feature of eukaryotic membranes. The sterol ...
متن کاملSterol Biosynthesis Is Required for Heat Resistance but Not Extracellular Survival in Leishmania
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa a...
متن کاملTHE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE
Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of genetics
دوره 41 شماره
صفحات -
تاریخ انتشار 2007